Updates from November, 2011 Toggle Comment Threads | Keyboard Shortcuts

  • yongjaelee2011 9:19 pm on November 5, 2011 Permalink | Reply  

    Meet the Hallowbot 

    1) Hallowbot

    2) The basic idea of my Hallowbot is that communicates with a user. I put a PIR Motion Sensor that detects a user in the room or the area, and greets with waking up with blue leds on the eyes. Then, if a user gets close enough to the Hallowbot, there will be an animation with yellow leds that triggered by a PhotoCell. The yellow animation is similar that talks to a user. Also, I put a Tilt Sensor that triggered by a user touching Hallowbot’s Antena on the top of the head and change the color of a led light to red.

    3)

    3) A photo of the final project


    4) A short video demonstrating it.


    5) The code you used.

    int inputPin = 2;
    int ledPin = 6; // blue led 1
    int ledPin4 = 7;  // green led 1  
    
    // button 2 animation
    int inputPin2 = 3;
    int ledPin2 = 8;  // yellow led 1
    int ledPin5 = 9;  // yeallow led 2
    int ledPin6 = 10; // yellow led 3
    int ledPin7 = 11;  // yellow led 4
    
    int inputPin3 = 4;
    int ledPin3 = 12;  // red led
    
    /**** motion sensor *****/
    int timer = 500;
    int sensorPin = A0;
    int sensorValue = 0;
    
    /*    photocells */
    int photocellPin = A1;     // the cell and 10K pulldown are connected to a0
    int photocellReading;     // the analog reading from the sensor divider
    int LEDbrightness;        // 
    
    void setup(){
      Serial.begin(9600);
      pinMode(ledPin,OUTPUT);
      pinMode(inputPin,INPUT);
    
      pinMode(ledPin2,OUTPUT);
      pinMode(inputPin2,INPUT);
    
      pinMode(ledPin3,OUTPUT);
      pinMode(inputPin3,INPUT);
    
      //  green leds
      pinMode(ledPin4, OUTPUT);
    
      //  yellow leds
      pinMode(ledPin5,OUTPUT);
      pinMode(ledPin6,OUTPUT);
      pinMode(ledPin7,OUTPUT);
    
      /**** photocells *****/
      pinMode(photocellPin, INPUT);
    
      /***** motion sensor *****/
      pinMode(sensorPin, INPUT); // A0 analog input
      digitalWrite(sensorPin, HIGH); //INTERNAL PULL-UP RESISTOR
      delay (2000); // it takes the sensor 2 seconds to scan the area around it before it can detect presence. 
    
    }
    
    void loop(){
    
      int val = analogRead(sensorPin);
      if (val < 1000){
        digitalWrite(ledPin,HIGH);
        digitalWrite(ledPin4,LOW);
      }
      else{
        digitalWrite(ledPin,LOW);
        digitalWrite(ledPin4,HIGH);
      }
    
      delay(timer);
      Serial.println (val);
      delay (1000);  
    
      int val2 = analogRead(photocellPin);
    
      Serial.print("Analog reading for photocell = ");
      Serial.println(val2);     // the raw analog reading
    
      if(val2 <800)
      {
        digitalWrite(ledPin3,LOW);
        digitalWrite(ledPin4,LOW);
        digitalWrite(ledPin,HIGH);
        for(int i=0; i<3; i++)
        {
          digitalWrite(ledPin2, HIGH);
          digitalWrite(ledPin5, HIGH);
          digitalWrite(ledPin6, HIGH);
          digitalWrite(ledPin7, HIGH);
          delay(1000);
    
          digitalWrite(ledPin2, LOW);
          digitalWrite(ledPin5, LOW);
          digitalWrite(ledPin6, LOW);
          digitalWrite(ledPin7, LOW);
    
          digitalWrite(ledPin2, HIGH);
          delay(500);
    
          digitalWrite(ledPin2, LOW);
          digitalWrite(ledPin5, HIGH);
          delay(500);
    
          digitalWrite(ledPin5, LOW);
          digitalWrite(ledPin5, HIGH);
          delay(500);    
    
          digitalWrite(ledPin5, LOW);
          digitalWrite(ledPin6, HIGH);
          delay(500);    
    
          digitalWrite(ledPin6, LOW);
          digitalWrite(ledPin7, HIGH);
          delay(500);    
    
          digitalWrite(ledPin7, LOW);
          digitalWrite(ledPin6, HIGH);
          delay(500);
    
          digitalWrite(ledPin6, LOW);
          digitalWrite(ledPin5, HIGH);
          delay(500);
    
          digitalWrite(ledPin5, LOW);
          digitalWrite(ledPin, HIGH);
          delay(500);    
    
          digitalWrite(ledPin6, LOW);
          digitalWrite(ledPin7, HIGH);
          digitalWrite(ledPin6, HIGH);
          digitalWrite(ledPin5, HIGH);
          digitalWrite(ledPin2, HIGH);    
    
        }
      }
    
      //3
      int val3 = digitalRead(inputPin);
    
      Serial.print("Analog reading for tilt = ");
      Serial.println(val3);     // the raw analog reading
    
      if(val3 == HIGH){
        //    digitalWrite(ledPin,LOW); 
    
        digitalWrite(ledPin2, LOW);
        digitalWrite(ledPin5, LOW);
        digitalWrite(ledPin6, LOW);
        digitalWrite(ledPin7, LOW);   
    
        digitalWrite(ledPin3,HIGH);
      }
    
    }
     
  • josefayala 8:00 pm on November 5, 2011 Permalink | Reply
    Tags: Jack-O-Lantern, Pumpkin, Tilt Sensor   

    Josef Ayala-Wake-O-Lantern! 

    Description: This pumpkin was a simple exercise in implementing a circuit inside of an enclosure. It’s immediate purpose is to act as a sort of alarm, or sound and light signal for anyone aware of its use. The overall interaction of this pumpkin comes from changing its vertically. When the pumpkin is upright it’s quiet and when it is placed upside down it emits a sound. It’s interaction is based on both visual (seeing me sleep) and hearing the alarm (flipping the pumpkin over).

    Wake-O-Lantern uses:
    -Tilt Sensor (laced with cardboard to prevent short circuit).
    -Blue/Red LED (laced with cardboard to prevent short circuit).
    -8 Ohm Speaker (for positioning purposes, it was hot glued).

    PComp Pumpkin-Midterm-A from Josef Ayala on Vimeo.

    Interaction video can be seen here: http://vimeo.com/31656339

    (Sorry, still waiting for the upload!)



    <code>
    // constants won’t change. They’re used here to
    // set pin numbers:

    const int buttonPin = 4;     // the number of the pushbutton pin
    const int ledPin5 = 5;      // the number of the LED pin
    const int ledPin9 = 9;
    const int speaker = 8;
    int timer = 100;

    // variables will change:
    int buttonState = 0;         // variable for reading the pushbutton status

    void setup() {
    // initialize the LED pin as an output:
    pinMode(ledPin5, OUTPUT);
    pinMode(ledPin9, OUTPUT);
    pinMode(speaker, OUTPUT);

    // initialize the pushbutton pin as an input:
    pinMode(buttonPin, INPUT);
    }

    void loop(){
    // read the state of the pushbutton value:
    buttonState = digitalRead(buttonPin);

    // check if the pushbutton is pressed.
    // if it is, the buttonState is HIGH:
    if (buttonState == LOW) {
    // turn LED off:
    delay (1000);
    digitalWrite(ledPin5, HIGH);
    digitalWrite(ledPin9, LOW);
    tone(speaker,1000);
    delay(2000);
    noTone(speaker);
    delay(1000);
    }
    else {
    // turn LED off:
    delay (1000);
    digitalWrite(ledPin9, HIGH);
    digitalWrite(ledPin5, LOW);

    }
    }
    <code/>

     
  • hirumi 1:38 am on November 5, 2011 Permalink | Reply  

    The Harry Potter Pumpkin 

    The Harry Potter Pumpkin is a social pumpkin that interacts with you based on proximity. From far away, he is sad and sits quietly with red eyes. If you move a little closer, his eyes change to green and he turns on the light from his magic wand. When you are REALLY close, his eyes change to blue, his wand lights up completely, and he hums the Harry Potter theme.


    Final Video


    Final Pumpkin

    Parts used:
    LEDs
    RGB LEDs
    8 Ohm mini speaker
    mini photocell

    Whats happening:
    The photocell values dictate what the other components do. The largest value keeps the RGB LEDs (the eyes) red. The medium range changes the RGBs to green and lights the tip of the wand. The lowest range changes the RGBs to blue, lights up the entire wand, and plays the Harry Potter theme from the speaker. I looked up the sheet music for HP  to compose the tune.

    Testing out the circuit

    I had to tweak my original concept, which was having the pumpkin shoot different spells the closer you approached it. The Twig sound recorder was so difficult to work with. I was able to record spells, but controlling it through the arduino was tough. The sounds kept looping instead of playing one at a time, so I decided to change my concept a bit.

    If I could redo this project, I would use the sound shield, which seems to be easier to control with the arduino, so that the pumpkin will actually shoot spells.

    CODE:

    #include “pitches.h”
    int analogPin = 4;   //Set value for analog pin input from photocell into arduino
    int red = 3;        // If serial reads val <= 700, red will go HIGH
    int green = 4;      // If serial reads val >= 701 or val <= 825, green will go HIGH
    int blue = 5;       // If serial reads val >= 826, blue will go HIGH
    int wand1 = 9;
    int wand2 = 10;
    int wand3 = 11;
    int wand4 = 12;
    int wand5 = 13;
    int val = 0;         // Store value of pin input (i.e. photocell) for serial to read
    int melody[] = {
      NOTE_B3, NOTE_E4, NOTE_G4, NOTE_FS4, NOTE_E4, NOTE_B4, NOTE_A4, NOTE_FS4};
    // note durations: 4 = quarter note, 8 = eighth note, etc.:
    int noteDurations[] = {
      4, 3, 8, 4, 2, 4, 1.5, 1.5 };
    void setup(){
     Serial.begin(9600);
     pinMode(red, OUTPUT);
     pinMode(green, OUTPUT);
     pinMode(blue, OUTPUT);
      pinMode(wand1, OUTPUT);
     pinMode(wand2, OUTPUT);
     pinMode(wand3, OUTPUT);
     pinMode(wand4, OUTPUT);
     pinMode(wand5, OUTPUT);
    }
    void loop(){
     val = analogRead(analogPin);  // Read the value (amount of light) from photocell
     Serial.println(val);           // Print out the value to the serial port
     if(val <= 749){
      digitalWrite(blue, HIGH);
      digitalWrite(wand1, LOW);
      digitalWrite(wand4, HIGH);
      delay(250);
      digitalWrite(wand3, HIGH);
      delay(250);
      digitalWrite(wand2, HIGH);
      delay(250);
      digitalWrite(wand1, HIGH);
      lumos();
      delay(2000);
     }else{
      digitalWrite(blue, LOW);
      digitalWrite(wand1, LOW);
      digitalWrite(wand2, LOW);
      digitalWrite(wand3, LOW);
      digitalWrite(wand4, LOW);
     }
     if(val >= 750 || val <= 799){
      digitalWrite(green, HIGH);
     digitalWrite(wand1, HIGH);
     }else{
      digitalWrite(green, LOW);
     }
      if(val >= 800){
       digitalWrite(red, HIGH);
      digitalWrite(wand1, LOW);
      }else{
       digitalWrite(red, LOW);
      }
    }
    void lumos (){
    for (int thisNote = 0; thisNote < 8; thisNote++) {
        // to calculate the note duration, take one second
        // divided by the note type.
        //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
        int noteDuration = 1000/noteDurations[thisNote];
        tone(8, melody[thisNote],noteDuration);
        // to distinguish the notes, set a minimum time between them.
        // the note’s duration + 30% seems to work well:
        int pauseBetweenNotes = noteDuration * 1.30;
        delay(pauseBetweenNotes);
        // stop the tone playing:
        noTone(8);
      }
     }
    PITCHES (to include in new tab)
    #define NOTE_B0  31
    #define NOTE_C1  33
    #define NOTE_CS1 35
    #define NOTE_D1  37
    #define NOTE_DS1 39
    #define NOTE_E1  41
    #define NOTE_F1  44
    #define NOTE_FS1 46
    #define NOTE_G1  49
    #define NOTE_GS1 52
    #define NOTE_A1  55
    #define NOTE_AS1 58
    #define NOTE_B1  62
    #define NOTE_C2  65
    #define NOTE_CS2 69
    #define NOTE_D2  73
    #define NOTE_DS2 78
    #define NOTE_E2  82
    #define NOTE_F2  87
    #define NOTE_FS2 93
    #define NOTE_G2  98
    #define NOTE_GS2 104
    #define NOTE_A2  110
    #define NOTE_AS2 117
    #define NOTE_B2  123
    #define NOTE_C3  131
    #define NOTE_CS3 139
    #define NOTE_D3  147
    #define NOTE_DS3 156
    #define NOTE_E3  165
    #define NOTE_F3  175
    #define NOTE_FS3 185
    #define NOTE_G3  196
    #define NOTE_GS3 208
    #define NOTE_A3  220
    #define NOTE_AS3 233
    #define NOTE_B3  247
    #define NOTE_C4  262
    #define NOTE_CS4 277
    #define NOTE_D4  294
    #define NOTE_DS4 311
    #define NOTE_E4  330
    #define NOTE_F4  349
    #define NOTE_FS4 370
    #define NOTE_G4  392
    #define NOTE_GS4 415
    #define NOTE_A4  440
    #define NOTE_AS4 466
    #define NOTE_B4  494
    #define NOTE_C5  523
    #define NOTE_CS5 554
    #define NOTE_D5  587
    #define NOTE_DS5 622
    #define NOTE_E5  659
    #define NOTE_F5  698
    #define NOTE_FS5 740
    #define NOTE_G5  784
    #define NOTE_GS5 831
    #define NOTE_A5  880
    #define NOTE_AS5 932
    #define NOTE_B5  988
    #define NOTE_C6  1047
    #define NOTE_CS6 1109
    #define NOTE_D6  1175
    #define NOTE_DS6 1245
    #define NOTE_E6  1319
    #define NOTE_F6  1397
    #define NOTE_FS6 1480
    #define NOTE_G6  1568
    #define NOTE_GS6 1661
    #define NOTE_A6  1760
    #define NOTE_AS6 1865
    #define NOTE_B6  1976
    #define NOTE_C7  2093
    #define NOTE_CS7 2217
    #define NOTE_D7  2349
    #define NOTE_DS7 2489
    #define NOTE_E7  2637
    #define NOTE_F7  2794
    #define NOTE_FS7 2960
    #define NOTE_G7  3136
    #define NOTE_GS7 3322
    #define NOTE_A7  3520
    #define NOTE_AS7 3729
    #define NOTE_B7  3951
    #define NOTE_C8  4186
    #define NOTE_CS8 4435
    #define NOTE_D8  4699
    #define NOTE_DS8 4978
     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel